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To better understand the molecular mechanisms that underlie the
tumorigenesis and progression of clear cell renal cell carcinoma
(ccRCC), we studied the gene expression profiles of 29 ccRCC
tumors obtained from patients with diverse clinical outcomes by
using 21,632 cDNA microarrays. We identified gene expression
alterations that were both common to most of the ccRCC studied
and unique to clinical subsets. There was a significant distinction in
gene expression profile between patients with a relatively non-
aggressive form of the disease [100% survival after 5 years with
the majority (15y17 or 88%) having no clinical evidence of metas-
tasis] versus patients with a relatively aggressive form of the
disease (average survival time 25.4 months with a 0% 5-year
survival rate). Approximately 40 genes most accurately make this
distinction, some of which have previously been implicated in
tumorigenesis and metastasis. To test the robustness and potential
clinical usefulness of this molecular distinction, we simulated its
use as a prognostic tool in the clinical setting. In 96% of the ccRCC
cases tested, the prediction was compatible with the clinical
outcome, exceeding the accuracy of prediction by staging. These
results suggest that two molecularly distinct forms of ccRCC exist
and that the integration of expression profile data with clinical
parameters could serve to enhance the diagnosis and prognosis of
ccRCC. Moreover, the identified genes provide insight into the
molecular mechanisms of aggressive ccRCC and suggest interven-
tion strategies.

Renal cell carcinoma (RCC) is the most common malignancy
arising in the adult kidney, representing 2% of all malig-

nancies and 2% of cancer-related deaths. It is a clinicopatho-
logically heterogeneous disease, subdivided into clear, papillary,
granular, spindle, and mixed cell variants based on cytoplasmic
features (1). The prognosis of RCC is based on tumor staging and
histological grading (2), and patients with metastatic RCC
('30% of all RCC cases) have a life expectancy averaging
around 12 months (3, 4). Of the remaining patients with initially
nonmetastatic disease, '30% relapse after surgery and usually
succumb to the disease (5, 6). To date, there is little understand-
ing of the underlying molecular mechanisms that may cause this
variety in prognoses.

There is now strong evidence that global gene expression
profiling can reveal subtypes of cancer based on underlying
heterogeneity in transformation mechanisms, differentiation
states, or cell types (7–12). For example, a recent study showed
that two types of hereditary breast cancer (BRCA1 and -2) had
distinguishable gene expression profiles (12), suggesting that the
observed differences in gene expression resulted from differ-
ences in transforming genetic mutations. In another study, gene
expression profiles of hepatocellular carcinoma differed accord-
ing to whether patients were hepatitis B virus-positive or hep-
atitis C virus-positive (7), again suggesting that the mechanism
of tumorigenesis affected the gene expression profile.

The clinical use of gene expression profiles could result in
more accurate and objective diagnoses of cancers as well as

prognoses of disease or response to treatment. Tumor samples
with long-term followup information are required to assess the
prognostic significance of certain gene expression profiles, such
as in a recent study of diffuse large B-cell lymphoma tumors that
showed significantly variant survival probabilities based on
distinct gene expression profiles (9). Similar studies for other
malignancies are anticipated but remain challenging because
they require both proper storage of operated tissues and long-
term followup information on patients.

The availability of 29 clear cell RCC (ccRCC) frozen tissue
specimens with up to 12 years of followup information provided
a tremendous opportunity to further our understanding of
ccRCC classification and the role that tumor subclasses may play
in the heterogeneity of ccRCC progression and aggressiveness.
We obtained gene expression profiles of 29 ccRCC samples and
studied the data to: (i) identify common alterations in ccRCC
gene expression; (ii) identify expression signatures of ccRCC
specific to particular clinical subsets of tumors; and (iii) assess
the clinical usefulness of certain gene expression profiles by
simulating clinical usage.

Materials and Methods
Patient Information and Tumor Samples. Tissue samples were ob-
tained from 29 patients with ccRCC after radical nephrectomy
at the University Hospital, School of Medicine, Tokushima
University. Informed consent was obtained from patients to use
their operated specimens and clinicopathological data for re-
search purposes. The samples were anonymized before the study.
Part of each tumor sample was frozen in liquid nitrogen imme-
diately after the operation and stored at 280°C. Total RNA was
isolated from the frozen tissue by using ISOGEN solution
(Nippon Gene, Toyama, Japan), and poly(A)1 RNA was iso-
lated from total RNA by using the Oligotex mRNA Mini Kit
(Qiagen, Chatsworth, CA). The remaining parts of tumors were
fixed with 10% buffered formalin, and the paraffin sections were
stained with hematoxylinyeosin. The World Health Organiza-
tion International Histological Classification of Tumors was used
for histological evaluation of the specimens (1). Union Interna-
tionale Contre le Cancer TNM classification and stage groupings
were used (13). Clinicopathological data are summarized in
Table 1. Patients have been followed up for 3.2 to 137.2 months
(median 83.7 months).
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Microarray Experiments. cDNA microarray production and hy-
bridizations were performed as described with slight modifica-
tion (14, 15) (published as supplemental data on the PNAS web
site, www.pnas.org).

Data Analysis. Images were analyzed by using the software
GENEPIX PRO 3.0 (Axon Instruments, Foster City, CA). Spots
showing no signal or obvious defects were excluded from the
analysis. The local background was subtracted from the remain-
ing spots, and the ratios of net fluorescence from the Cy5-
specific channel to the net fluorescence from the Cy3-specific
channel were calculated for each spot, representing tumor
mRNA expression relative to the corresponding normal kidney
tissue. Ratios were log-transformed (base 2) and normalized so
that the average log-transformed ratio equaled zero. Genes with
good data present in 75% of the experiments and with expression
ratios that varied at least 2-fold in at least two experiments were
selected for the clustering analysis (3,184 genes). The gene ratios
were ‘‘median polished’’ before hierarchical clustering by using
CLUSTER and visualized by using TREEVIEW (M. B. Eisen,

http:yyrana.lbl.gov). The correlation distance calculated by
CLUSTER is equal to 1 2 r, where r, the Pearson correlation
coefficient (16), equals 1 for perfectly correlated series and 21
for perfectly opposite series.

We developed the program CLUSTERFINDER to identify and
rank subclusters of genes that distinguish between two defined
sample groups. Briefly, the red-to-green ratios of all of the genes
within each subcluster, or node of a dendrogram, are averaged
for each patient sample, and the averages are placed into two
groups based on user-defined criteria. For each group of ex-
pression value averages, the mean (m) and standard deviation (s)
is calculated. A discrimination score (DS) for each subcluster is
calculated as DS 5 m1 2 m2 y(s1 1 s2), where the subscripts
refer to the sample group. A large DS indicates that the genes
in that cluster have great variation between the two groups but
low variation within each group (8). A DS of 1.0 would approx-
imate a significantly discriminating cluster (a 5 0.05).

To calculate the ability of individual genes to distinguish
between two sample groups by using the permutation t test (12),
patients were randomly permuted into two groups 10,000 times,
and for each gene, a t-statistic was calculated. The distribution
of t-statistics defined a 99.9% significance threshold (a 5 0.001).
If a gene’s t-statistic for the user-defined patient grouping passed
the 99.9% significance threshold, the gene was considered to
significantly distinguish the two groups.

Survival analyses based on stage, histological grade, and gene
expression profile were performed by the Kaplan–Meier method
and tested by the log-rank test. Correlation of histological grade
or stage with the gene expression profile was analyzed as the
Spearman correlation coefficient by the exact test with the
SASySTAT analysis package (Ver. 8.0, SAS Institute, Cary, NC).
Three patients were excluded from the statistic analyses because
of less than 5 years of followup.

Results
We compared the expression profiles of 29 ccRCC samples and
patient-matched normal tissue samples by hybridization to
21,632 cDNA microarrays. We analyzed the data in two ways.
First, we compared the gene expression of each tumor sample
with its patient-matched normal tissue to identify gene expres-
sion alterations that occur in most ccRCC. Second, because all
of the experiments shared a ‘‘common’’ normal tissue reference,
the experiments could be compared with each other to identify
gene expression patterns that correlated with differences in
observed clinical features of the tumors.

Shared Gene Expression Alterations in ccRCC Tumors. We first sought
to identify gene expression alterations that were shared by all of
the ccRCC tumors we studied. We selected genes that were at
least 3-fold up- or down-regulated in at least 75% of the tumors.
The 32 up- and 77 down-regulated genes that met the above
criteria are summarized in Tables 2 and 3 (published as supple-
mental data on the PNAS web site, www.pnas.org). Both pre-
viously known and unknown genes were found to be significantly
up- or down-regulated in many or all of the ccRCC. See
Discussion for commentary on some of the individual genes.

Heterogeneity in ccRCC Gene Expression and Correlation with Clinical
Phenotypes. Having identified shared gene expression alterations
in the ccRCC samples, we next studied differences in the gene
expression profiles that could distinguish, and possibly give
biological insight into, the clinical heterogeneity of the tumors.

We used hierarchical clustering (16) to look at the variation in
gene expression among the tumors. The clustering algorithm
groups both genes and tumors by similarity in expression pattern.
The pattern of groupings depends on the set of genes and tumors
used. For example, a set of genes with highly correlated expres-
sion patterns may dominate and define a cluster pattern, but

Table 1. Patient clinical and followup data and corresponding
prognosis classifications

Patient Grade Stage Outcome Dur.
Outcome

group

Prognosis group

Staging
Gene

expression

46 G1 S1 NED 62.6 L L L
42 G1 S1 NED 77.3 L L L
41 G1 S1 NED 80.3 L L L
30 G2 S3 NED 87.1 L H* H*
7 G1 S1 NED 92.1 L L L
26 G1 S1 NED 96 L L L
24 G1 S1 NED 97.3 L L L
15 G1 S1 OCD 100.4 L L L
32 G1 S2 OCD 110.4 L L L
1 G1 S1 NED 111.6 L L L
21 G1 S1 NED 114.6 L L L
20 G1 S1 NED 115.8 L L L
35 G1 S3 NED 120.5 L H* L
9 G1 S3 NED 120.9 L H* L
3 G1 S1 NED 137.2 L L L
29 G3 S3 AWC 89.4 L H* L
54 G1 S4 AWC 105.6 L H* L
13 G3 S4 Death 3.2 H H H
48 G2 S4 Death 4.9 H H H
11 G3 S3 Death 18.8 H H H
60 G3 S4 Death 20.8 H H H
31 G3 S3 Death 22.6 H H H
53 G3 S4 Death 26.2 H H H
5 G2 S4 Death 31.7 H H H
12 G2 S4 Death 33.8 H H H
55 G2 S2 Death 55.8 H L* H
56 G3 S4 AWC 14.8 U H L
58 G3 S4 AWC 16.6 U H H
59 G2 S3 NED 41.1 U H H

Patient clinical data and corresponding prognostic classifications. Grade
and stage information (columns 2 and 3) corresponds to the primary tumor.
Outcomes (column 4) are: no evidence of disease (NED), alive with cancer
(AWC), other cause of death (OCD), and cancer death. Duration (column 5) is
months between nephrectomy and latest outcome assessment. Outcome
group (column 6) is the risk group, based on actual patient outcome that was
used for predictive gene set generation (L, low risk; H, high risk; U, unknown).
Pathology prognosis group (column 7) is based on staging (L, stage I/II; H, stage
III/IV). Gene expression prognosis group (column 8) is based on a gene expres-
sion prognosis test based on the selected genes. p, deviation in outcome from
the predicted risk group.
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clustering based on another less correlated set of genes may
result in a very different pattern of clustering. Clustering based
on the total gene expression profile, approximated by a selected
3,184 gene set, revealed great variation in up- and down-
regulated genes among the tumors (Fig. 1A). The tumors clus-
tered into two main groups, as shown by the dendrogram at the
top of the cluster pattern. The grouping largely correlated with

cause-specific survival at 5 years, with only two tumors that did
not cluster by that parameter.

We next sought to identify particular subsets of genes that
most strongly defined the division of patients by cause-specific
survival at 5 years and to ascertain whether other gene sets could
distinguish other clinical parameters. We used the program
CLUSTERFINDER to identify and rank the subclusters of genes by

Fig. 1. Clustering of subsets of genes in 29 ccRCC tumors. Rows represent individual cDNAs, and columns represent individual patient tumor samples. The color
of each square represents the median-polished normalized ratio of gene expression in a tumor relative to patient-matched normal kidney tissue. Red indicates
gene expression above the median; green, below the median; black, equal to the median; and gray, inadequate or missing data. The color saturation indicates
the degree of divergence from the median. (A) Clustering of all 3,184 genes and 29 tumors. The colored bars on the right of the diagram indicate clusters with
high discrimination scores. (B) Reclustering of genes and tumors by using three ‘‘predictive’’ clusters. The color coding of the patient list indicates cause-specific
survival at 5 years: red indicates cancer death, blue indicates alive, and black indicates short followup. The color bars beneath the dendrograms represent the
average expression values for the subsets of genes. (C) Expanded view of the patient dendrograms from B, showing the structure of similarity relationships
between the gene expression profiles.
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their ability to differentiate two user-defined groups of tumors.
When we applied the program to 10 random groupings of
tumors, no gene clusters differentiated the groups above a DS of
1.0, our previously determined threshold for significance. Be-
cause tumor staging is often used to determine the prognosis of
ccRCC (2), we tested whether any gene sets defined this
parameter and could possibly have value as indicators of cancer
progression. Surprisingly, no gene clusters significantly differ-
entiated between stage I 1 II and stage III 1 IV tumors (data
not shown).

When we applied CLUSTERFINDER to a tumor grouping based
on cause-specific survival at 5 years, multiple clusters with a high
DS were found. Cluster 687, containing 24 genes, and its parent,
cluster 1281, containing 51 genes, had the highest DS (1.70),
whereas cluster 3014, with 48 genes, and cluster 2199, with 61
genes, also had passing scores (1.46 and 1.011, respectively). The
tumors were reclustered on the basis of these gene sets (Fig. 1B).
Clustering based on the genes of cluster 1281 grouped the tumors
by outcome, except for patient 30. This patient showed similar
expression with the poor outcome group but has no evidence of
disease after 5 years. The dendrogram for cluster 1281 shows the
strict segregation of patients by outcome (Fig. 1C), reflected in

a high correlation score for cluster 1281 (0.839). Clustering by
the genes of clusters 3014 and 2199 resulted in one and five
misgroupings by patient outcome, respectively, with lower cor-
relation scores (0.516 and 0.692, respectively).

We also used a permutation t test to assess each gene’s
individual ability to distinguish between two groups of patients
(12). Ninety-four percent of the genes from cluster 1281 signif-
icantly (a , 0.001) differentiated the patient groups, but only 19
and 7% of the genes from clusters 3014 and 2199, respectively,
significantly differentiated the patient groups.

The tumors were reclustered on the basis of genes of node
1281 by using nonmedian centered expression values, so that the
colors represented the actual gene expression level of the tumor
relative to the normal (Fig. 2). The resulting cluster pattern was
different from that by using median-centered values (Fig. 1 B and
C), but the grouping by cause-specific survival remains distinct.
This cluster is comprised of genes up-regulated in the tumors
with the good outcome and genes down-regulated in tumors with
the poor outcome.

Simulation of Clinical Diagnosis and Prognosis. The groups of genes
that differentiate the tumors by patient outcome may provide

Fig. 2. Clustering of the 51 genes of cluster 1281 by using nonmedian centered values. In this case, the color of each square corresponds to actual normalized
gene expression level relative to normal kidney tissue, by using the same scale as in Fig. 1. (A) Genes mostly up-regulated in tumors with the good outcome. (B)
Genes mostly down-regulated in tumors with the poor outcome.
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insight into classifications and molecular mechanisms of ccRCC
and also may have value as potential clinical diagnostic and
prognostic markers. As such, we simulated the clinical diagnostic
and prognostic use of particular gene sets for each tumor sample
(Fig. 3). A ‘‘test’’ tumor was removed from the group, a new set
of predictive genes was generated from the remaining 28 tumors
by using CLUSTERFINDER, and the test tumor was clustered with
the other samples by using the predictive gene set. The test tumor
was classified as high or low risk, depending on whether it
clustered with the poor-outcome or good-outcome tumors,
respectively. This process was repeated for each tumor. The
prognostic classification of each tumor was considered ‘‘correct’’
if it corresponded to the actual outcome. The predictive gene set
was slightly different at each iteration, but on average 95% of the
genes were conserved.

Table 1 presents the results of the simulation. The ‘‘outcome
group’’ column indicates the grouping by using 5-year cause-
specific survival as the cutoff, and the two ‘‘prognosis group’’
columns show the risk group classification by staging (stage I 1
II 5 low risk, stage III 1 IV 5 high risk) or by expression
profiling. Prognostic classification by expression profiling had a
better prediction than staging in five patients (patients 35, 9, 29,
54, and 55). Patient 29, who had a grade 3 tumor invading into
the renal vein at operation (high risk by staging), had a low-risk
gene expression profile and has survived the operation by 7.5
years. Patient 55, who had a stage II, grade 2 tumor (low risk by
staging), had a high-risk gene expression profile and died of
ccRCC 4.6 years after the operation. Patient 54, classified as
low-risk by gene expression profiling, had bone metastasis at the
initial diagnosis but is still alive with stable bone metastasis 8.8
years after surgery. One patient, who was misgrouped by both
methods (patient 30), presented with stage III cancer and had a
high-risk gene expression profile, but 7 years later has no
evidence of disease.

We used Kaplan–Meier survival analysis to further compare
the significance of the prognostic classifications made by stage,
grade, and gene expression profile (Fig. 4). Classification by
grade (Fig. 4B, P , 0.0001) was better than that by stage (Fig.
4A, P 5 0.0049). Classification by expression profile (Fig. 4C)
was similar in significance to that by grade. In addition, histo-
logical grade and gene expression classification were highly
correlated (correlation coefficient 5 0.7703, P , 0.0001), sug-
gesting that histological grades are affected by gene expression
profiles. Within the high-risk group defined by staging (stage III
1 IV), gene expression profiling significantly distinguished two
groups of patients with different outcomes (Fig. 4D). Multivar-
iate analysis of these parameters was also attempted but pro-
hibited by the sample size of our cohort. A larger cohort of
patients would enable further investigation of the correlation of
expression profile with other covariates, such as grade, gender
and age, through multivariate analysis.

Discussion
Common Alterations in ccRCC Gene Expression. The above analysis
revealed that there are both similarities and differences in the
gene expression profiles of ccRCCs. Genes with altered expres-
sion in most ccRCCs may serve as molecular markers for the
diseased state or may play a causal role in renal transformation,

therefore serving as candidate therapeutic targets. For example,
ceruloplasmin, a protein involved in iron and copper homeosta-
sis, had the highest increase in expression in the ccRCC relative
to corresponding normal kidney tissues (Table 2, www.pnas.org).
Interestingly, only a handful of reports have associated cerulo-
plasmin with RCC. One reported its secretion by RCC (17) and
another its elevation in the serum of RCC patients (18). Another
copper-related protein, lysyl oxidase (an extracellular enzyme
involved in the connective tissue maturation pathway), was also
up-regulated in ccRCC. It has been reported to be highly
expressed in invasive breast cancer cell lines (19) but has never
been studied in RCC. In 96% of the tumors, high expression of
vascular endothelial growth factor (VEGF), a well-known pro-
tein highly expressed in ccRCC (20, 21) and found elevated in the
serum of ccRCC patients (22–24), was found.

In addition, many identified down-regulated genes (Table 3,
www.pnas.org) may be involved in the tumorigenesis of ccRCC.
Most strikingly, kininogen was found to be more than 27-fold
down-regulated in the tumors. Kininogen, a molecule involved in
the activation of the contact system, recently was shown to be an
inhibitor of angiogenesis (25). Its down-regulation may concur
with up-regulation of VEGF, resulting in hypervascularization,
a characteristic of ccRCC. We also found the metallothionein
(MT) family to be coordinately down-regulated. Differential
expression of this class of genes has been reported in many
cancers (26), and several subtypes (MT-1A, -1G, and -1H) were
reported down-regulated in RCC (27, 28). Our study supported
these reports and additionally found MT-1L and -1E to be
down-regulated.

Expression Signatures of RCC Specific to Particular Clinical Subsets of
Tumors. The diversity in the gene expression profiles largely
defined two patient groups that were distinguishable by cause-
specific survival at 5 years. These findings may reflect the
existence of distinct subclasses of ccRCC that differ in clinical
behavior. We showed that, whereas no statistically significant
groups of genes correlated with random groupings of tumors or
with staging of tumors, multiple clusters of dozens of genes with
high statistical significance correlated with cause-specific sur-
vival at 5 years. This result showed that only certain groupings
of patients have distinguishing gene expression signatures, likely
only the groupings that have an underlying biological basis.
Therefore, the two groups of ccRCC identified by gene expres-
sion profiling may represent two classes of ccRCC, an aggressive

Fig. 3. Clinical simulation model (see Results for description).
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and a nonaggressive class, that have distinct molecular bases and
distinct mechanisms of progression.

Many of the 51 cDNAs (40 genes) in cluster 1281 that most
effectively discriminate between patients with the good and poor
outcome gave insight into the biology of the two groups of
ccRCC. For example, sprouty, the mammalian homolog of the
Drosophila melanogaster angiogenesis inhibitor, was up-
regulated exclusively in the good outcome group, suggesting that
failure to properly inhibit angiogenesis may contribute to the
aggressive form of ccRCC. The regulator of G-protein signaling
5 was exclusively up-regulated in the good outcome tumors and
may be important for the proper control of cancer progression.
Transforming growth factor (TGF)b, TGFb receptor II
(TGFbRII) and its down-stream effector, tissue inhibitor of
metalloproteinase 3 (TIMP3), were exclusively down-regulated
in the poor outcome group. Loss of the TGFbII signaling
pathway previously was shown to be important for the develop-
ment of aggressive cancers (29), and loss of TIMP3 expression
by promoter methylation was shown to increase tumorigenicity
because of unregulated matrix metalloproteinases (30). The
identification of this pathway as down-regulated in aggressive
ccRCC suggests numerous targets for intervention to supple-
ment the still low response rate of current adjuvant therapies,
such as IFN-a and IL-2 injection. For example, a recent study
demonstrated the inhibition of invasion in melanoma cell lines
by overexpressing TIMP3 by adenovirus-mediated gene deliv-
ery (31).

Clinical Usefulness of the Gene Expression Profiles. The long-term
followup information on each tumor allowed us to test the

usefulness of gene expression profiling for prognosis. Gene
expression profiling very accurately grouped the patients by risk
group, demonstrated by a clinical simulation test (Fig. 3 and
Table 1) and by Kaplan–Meier survival analysis (Fig. 4 C and D).
Gene expression profiling more accurately predicted risk group
than staging alone (Fig. 4A) and identified two risk groups within
the stage III 1 IV tumors. This result is encouraging for the
eventual development of more accurate clinical diagnostic and
prognostic methods for ccRCC patients.

In conclusion, we have identified gene expression alterations
that are both common to most ccRCC cases and unique to
clinical subsets. The identified genes may give insight into
ccRCC tumorigenesis and progression and may also suggest
intervention strategies. The segregation of patients by 5-year
survival based on expression profiles and histological grading
may indicate that there are at least two subclasses of ccRCC that
have distinct behaviors and underlying mechanisms of progres-
sion. If so, the treatment of ccRCC patients should be based in
part on the knowledge of this subclassification. For example,
physicians may be advised to provide careful observation and
adjuvant therapies to patients presenting with low-stage but
high-risk expression profile cancers. On the contrary, for pa-
tients with the low-risk expression profile and high-stage cancer,
we may be able to avoid aggressive treatments under careful
observation.
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